| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2012 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 5.9.3.1
December 18 2012



Copyright © 1997-2012 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

December 18 2012



Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1



1.1 Installing the Binary Release

1 Installation Guide

How to install Erlang/OTP on UNIX or Windows.

1.1 Installing the Binary Release

1.1.1 UNIX

Introduction
The system is delivered as a single compressed tar file.
To browse the on-line HTML documentation, Netscape or an equivalent browser supporting frames is needed.

Installation Procedure

When installed, the entire system, except for a small start-up script, residesin asingle directory tree. The location of
this directory tree can be chosen arbitrarily by the installer, and it does not need to be in the user's $PATH. The only
requirements are that the file system whereit is placed has enough free space, and that the users who run Erlang/OTP
have read access to it. In the example below, the directory tree is assumed to be located at / usr/ | ocal / er | ang,
which is here called the top-level directory.

It is assumed that you have the compressed tar file, the name of which is <PREFI X>. t ar . gz, where <PREFI X>
isastring denoting the particular Erlang/OTP release, e.g. ot p_LXA 11930_sunos5_R9B.

Wherever the string <PREFI X> is used below, it should be replaced by the actual name prefix of the compressed
tar file.

The tape archive file does not have one single directory in which all other files are rooted. Therefore the tape archive
file must be extracted into an empty (newly created) directory.

e |f thetop-level directory does not already exist, create it:

nkdir /usr/local/erlang

*  Changethe current directory to the top level directory:

cd /usr/local/erlang

» Createtheingtallation directory with an appropriate name. For example:

nkdir otp_r7b

« Changeto theinstallation directory, e.g.

cd otp_r7b

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.2 Installation Verification

e Assuming the compressed tar file residesin the directory <SOVE- DI R>,. extract the compressed tar file into the
current directory:

gunzip -c <SOVE-DI R>/ <PREFI X>.tar.gz | tar xfp -

* Read the README file in the installation directory for last minute updates, before proceeding.

e Runthelnstall scriptin the installation directory, with the absolute path of the installation directory as
argument,

./lnstall /usr/local/erlang/otp_r7b

and supply answers to the prompts.

In most cases, thereisadefault answer in square brackets([ ] ). If thedefault is satisfactory, just press<Ret ur n>.
In general you are only prompted for one thing:

e "Doyou want to use aminimal system startup instead of the SASL startup?"
In aminimal system, only the Kernel and STDLIB applications are loaded and started. If the SASL startup
isused, the SASL application isincluded aswell. Normally, the minimal system is enough.

e Make Erlang/OTP available for users, either by putting the path / usr /| ocal / erl ang/ ot p_r 7b/ bi n in
users $PATH variable, or link the executable/ usr /| ocal / er| ang/ ot p_r 7b/ bi n/ er| accordingly, e.g.:

In -s /usr/local/erlang/otp_r7b/bin/erl /usr/local/bin/erl

1.1.2 Windows

Introduction
The systemisdelivered asasingle. exe file.

To browse the on-line HTML documentation, Netscape or an equivalent browser supporting framesis needed.

Installation Procedure

Theinstallation procedure isis automated. Double-click the . exe fileicon and follow the instructions.

1.2 Installation Verification

This chapter is about verifying your installation by performing afew simple tests to see that your system is properly
installed.

1.2.1 UNIX

e Start Erlang/OTP from the command line,

uni x> erl

Expect the following output:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3



1.3 Building and Installing Erlang/OTP

Erl ang (BEAM emul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with *"Q
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start ().

and check that the toolbar window pops up.

Note: The trailing full stop (". ") is an end marker for all commands in the Erlang shell, and must be entered
for acommand to begin execution.

Exit by entering the command hal t (),

2> hal t().

which should end both the toolbar window and the command line window.

1.2.2 Windows

Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect acommand line window to pop up with the following output,

Erl ang (BEAM enul ator version 5.0.1 [threads]

Eshell V5.0.1 (abort with "G
1>

Start the GS-based toolbar from the Erlang shell,

1> tool bar:start().

and check that the toolbar window pops up.

Note: The trailing full stop (*. ") is an end marker for all commands in the Erlang shell, and must be entered
for a command to begin execution.

Exit by entering the command hal t (),

2> halt().

which should end both the toolbar window and the command line window.

1.3 Building and Installing Erlang/OTP

Table of Contents

Introduction
Daily Build and Test

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.3 Building and Installing Erlang/OTP

Versions Known NOT to Work
Required Utilities
e Unpacking
e Building
*  Building Documentation
e Buildingin Git

* Installing

How to Build and Install Erlang/OTP
e Unpacking

e Configuring

e Building

e Installing

e ACloser Look at the individual Steps

e Configuring

e Building

e Ingtalling

» Alternative Installation Procedures

e Symboalic Linksin --bindir
e Pre-built Source Release
e Buildingin Git
e makeand $ERL_TOP
The Erlang/OTP Documentation
e How to Build the Documentation

e Build Issues
* Howto Install the Pre-formatted Documentation
Support for SMP (Symmetric Multi Processing)
GS (Graphic System)
Using HiPE
Mac OS X (Darwin)
Building universal binaries on Mac OS X (obsolete information)
Building a fast Erlang VM on Mac OSLion
e Building with wxErlang
e Finishup
How to Build a Debug Enabled Erlang RunTime System
Authors
Copyright and License
More Information
Modifying This Document

1.3.1 Introduction

This document describes how to build and install Erlang/OTP-R15B03. Y ou are advised to read the whole document
before attempting to build and install Erlang/OTP. Y ou can find more information about Open Source Erlang/OTP at:

http://www.erlang.or g/

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5


href

1.3 Building and Installing Erlang/OTP

The source code for Erlang/OTP can also be found in a Git repository:
http://github.com/erlang/otp

Erlang/OTP should be possible to build from source on any Unix system, including Mac OS X. This document
describes how to native compile Erlang/OTP on Unix. For detailed instructions on how to

»  cross compile Erlang/OTP, see the $ERL_TOP/INSTALL-CROSSmd document.
*  build Erlang/OTP on Windows, see the $ERL_TOP/INSTALL-WIN32.md document.

Binary releases for Windows can be found at http://www.erlang.or g/download.html.

Before reading the above mentioned documents you arein any case advised to read this document first, sinceit covers
building Erlang/OTP in general aswell as other important information.

1.3.2 Daily Build and Test

e Solaris 8,9
*  Sparc32
e Sparctd
e Solaris 10
e Sparc32
e Sparctd
e x86
e SUSELinux/GNU 9.4, 10.1
e x86
e SuSE Linux/GNU 10.0, 10.1, 11.0
e x86
* Xx86 64

e 0penSuSE 11.4 (Celadon)
e x86_64 (vagrind)

 Fedora7
« PowerPC
e Fedoral4d
e Xx86 64
e Gentoo Linux/GNU 1.12.11.1
e X86
e Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.0
+ x86 64
« MontaVistaLinux/GNU 4.0.1
PowerPC
e FreeBSD 8.2
e x86
e OpenBSD 5.0
* Xx86 64
e MacOS X 10.5.8 (Leopard), 10.6.0 (Snow Leopard), 10.7.3 (Lion)
e x86
e Windows XP SP3, 2003, Vista, 7
e X86

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href
href

1.3 Building and Installing Erlang/OTP

Windows 7
 x86 64

We also have the following "Daily Cross Builds":

SUSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64
SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests":

SUSE Linux/GNU 10.1 x86_64

1.3.3 Versions Known NOT to Work

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had a bug which caused kqueue/pol | /sel ect tofail to detect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

e http://www.freebsd.or g/cgi/cvsweb.cgi/sr c/sys/kern/sys pipe.c

« http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September/006790.html

get cwd() on Solaris9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er| (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-
threads the only workaround available is to enable async-threads and increase the stack size of the async-threads.
Sun has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

*  http://sunsolve.sun.com/sear ch/document.do?assetk ey=1-21-112874-40-1& sear chclause=6448300
e http://sunsolve.sun.com/sear ch/document.do?assetkey=1-21-114432-29-1& sear chclause=6448300

1.3.4 Required Utilities
These are the tools you will need in order to unpack and build Erlang/OTP.

Unpacking

GNU unzip, or amodern uncompress.
A TAR program that understands the GNU TAR format for long filenames (such as GNU TAR).

Building

GNU nake

gcc -- GNU C compiler

Perl 5

GNU m4 -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel . Use- - wi t hout - t er ncap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7


href
href
href
href

1.3 Building and Installing Erlang/OTP

e OpenSSL -- Optional, but needed for building the Erlang/OTP applicationsss| and cr ypt 0. You need
the "devel opment package" of OpenSSL, i.e. including the header files. For building the application ssl the
OpenSSL binary command program openss| isalso needed. At least version 0.9.8 of OpenSSL is required.
Can be downloaded from http://www.openssl.org.

e  SunJavajdk-1.5.0 or higher -- Optional but needed for building the Erlang/OTP application j i nt er f ace and
partsof i ¢ and or ber . Can be downloaded from http://java.sun.com. We have also tested IBM's JDK 1.5.0.

e X Windows -- Optional, but development headers and libraries are needed to build the Erlang/OTP application
gs on Unix/Linux.

* sed -- There seem to be some problems with some of the sed version on Solaris. Make sure/ bi n/ sed or/
usr/ bi n/ sed isused on the Solaris platform.

« fl ex -- Optional, headers and libraries are needed to build thef | ex scanner for the megaco application on
Unix/Linux.

Building Documentation

e Xxsltproc -- XSLT processor. A tool for applying XSLT stylesheets to XML documents. Can be downl oaded
from http://xmlsoft.or g/X SL T/xdtproc2.html.

» fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.org/
fop.

Building in Git
* GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Installing
* Aninstall program that can take multiple file names.

1.3.5 How to Build and Install Erlang/OTP

The following instructions are for building the released sour ce tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Step 1: Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ gunzip -c otp_src_R15B03.tar.gz | tar xf -

alternatively:

$ zcat otp_src_R15B03.tar.gz | tar xf -

Step 2: Now cd into the base directory (SERL_TCOP).

$ cd ot p_src_R15B03

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href
href
href
href
href
href

1.3 Building and Installing Erlang/OTP

Configuring

Step 3: On some platforms Perl may behave strangely if certain locales are set, so optionally you may need to set
the LANG variable:

# Bourne shell
$ LANG=C; export LANG

or

# C- Shel |
$ setenv LANG C

Step 4: Run the following commands to configure the build:

$ ./configure [ options ]

By default, Erlang/OTP will be installed in /usr/1ocal /{bin,lib/erlang}. To instead install in
<BaseDir>/{bin,|ib/erlang},usethe--prefix=<BaseDi r > option.

If you upgraded the source with some patch you may need to clean up from previous builds before the new build.
Beforedoing anmeke cl ean, be sureto read the Pre-built Source Rel ease section below.

Building
Step 5: Build the Erlang/OTP package.

$ make

Installing
Step 6: Install then Erlang/OTP package

$ make install

A Closer Look at the individual Steps
Let us go through them in some detail.
Configuring

Step 4 runs a configuration script created by the GNU autoconf utility, which checks for system specific features and
then creates a number of makefiles.

The configure script alows you to customize a number of parameters; type . / configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,Iib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9



1.3 Building and Installing Erlang/OTP

Some of the available conf i gur e options are;

e --prefix=PATH- Specify installation prefix.

« --{enabl e, di sabl e} -t hreads - Thread support (enabled by default if possible)

« --{enabl e, di sabl e} - snp-support - SMP support (enabled by default if possible)

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --enabl e-darw n-uni versal -Builduniversa binaries on darwin i386.

e --enabl e-darw n- 64bi t - Build 64-bit binaries on darwin

e --enabl e- nB4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e- nB2- bui | d - Build 32-bit binariesusing the - n82 flagto ( g) cc

e --{with,w thout}-terntap - termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC - Specify Javacompiler to use

e --{with,wthout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, di sabl e} -shar ed- zl i b - Shared zlib library
e --with-ssl =PATH- Specify location of OpenSSL include and lib
e --{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt 0, ssh, and ssl won't be built)

e --with-libatomnm c_ops=PATH-Usethel i bat omi c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
using thel i bat oni c_ops library. It can be downloaded from http://www.hpl.hp.com/r esear ch/linux/
atomic_ops/.

If you or your system has special reguirements please read the Makef i | e for additiona configuration information.
Building

Step 5 buildsthe Erlang/OTP system. On afast computer, thiswill take about 5 minutes. After completion of this step,
you should have a working Erlang/OTP system which you can try by typing bi n/ er | . This should start up Erlang/
OTP and give you a prompt:

$ bin/erl
Erl ang R15B03 (erts-5.9.3.1) [source] [snp:4:4] [rq:4] [async-threads: 0] [kernel-poll:false]

Eshell V5.9.3.1 (abort with ~"G
1>
Installing

Step 6 is optional. It installs Erlang/OTP at a standardized location (if you change your mind about where you wish
toinstall you can rerun step 4, without having to do step 5 again).

Alternative Installation Procedures

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

$ make DESTDI R=<tnp install dir> install

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href
href
href

1.3 Building and Installing Erlang/OTP

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Note that | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$ ./configure --prefix=/opt/l ocal
make
make DESTDI R=/tnp/erlang-build install
cd /tnp/erlang-buil d/ opt/local

# gnu-tar is used in this exanple
tar -zcf /hone/me/ ny-erlang-build.tgz *
su -
Password: **xx*
$ cd /opt/l ocal
$ tar -zxf /hone/ nme/ ny-erl ang-build.tgz

R e T

Install using ther el ease target. Instead of doing make i nst al | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangif youdotheinstall using make i nstal | .All installation paths provided in the
conf i gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want links from a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

./configure

meke

make RELEASE ROOT=/ hore/ ne/ OTP rel ease
cd / hone/ me/ OTP

./lnstall -mniml /hone/ne/ OTP

nkdir -p /home/ me/ bin

cd / hone/ e/ bi n

In -s /home/ me/ OTP/ bin/erl erl

In -s /home/ me/ OTP/ bin/erlc erlc

I'n -s /home/ me/ OTP/ bi n/ escript escript

R R R

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):

$ ./Install [-cross] [-mninmal|-sasl] <ERL_ROOT>

where:

e« -m ni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also startsup the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

« <ERL_ROOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11



1.3 Building and Installing Erlang/OTP

If neither - m ni mal , nor - sasl ispassed as argument you will be prompted.

e Testinstall using EXTRA PREFI X. The content of the EXTRA PREFI X variablewill prefix al installation paths
when doing make i nst al | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /| ocal / |i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- pref i x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconf i gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_buil d renpbve_prebuilt fil es fromthe $SERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:
Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing ./ otp_buil d save_ boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot strap will
be invoked automatically when make isinvoked from $ERL_TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui |l d renove prebuilt fil es isinvoked.

Building in Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

Theconfi gur e scripts are generated by invoking . / ot p_bui I d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts aso have to be regenerated whenaconf i gure. i noracl ocal . n% file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source.

Other useful information can be found at our github wiki: http://wiki.github.com/er lang/otp

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href

1.3 Building and Installing Erlang/OTP

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> nake
where <Di r > would be what you find ERL_TOP is set to in the top level Makefile.

1.3.6 The Erlang/OTP Documentation

How to Build the Documentation

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$ ./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-R15B03 system in the $PATH.

$ export PATH=<Er| ang/ OTP- R15B03 bi n dir>: $PATH # Assumi ng bash/sh

Build the documentation.

$ nmake docs

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing make install .

$ nmake install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

$ make rel ease_docs RELEASE_ROOT=<rel ease dir>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13



1.3 Building and Installing Erlang/OTP

Build I'ssues

We have sometimes experienced problems with Sun'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="- Xnx<Installed ambunt of RAMin MB>ni

More information can be found at http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded at http://www.erlang.or g/download.html.

For some graphical tools to find the on-line help you have to install the HTML documentation on top of the installed
OTP applications, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_htnml _R15B03.tar.gz | tar xf -

Forerl -man <page> towork the Unix manual pages haveto be installed in the same way, i.e.

$ cd <Rel easeDir>
$ gunzip -c otp_man_R15B03.tar.gz | tar xf -

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstall .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using neke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.3.7 Support for SMP (Symmetric Multi Processing)

An emulator with SMP support will be built by default on most platforms if a usable POSIX thread library or native
Windows threadsis found.

Y ou can force building of an SMP emulator, by using . / conf i gure --enabl e- snp-support . However, if
configure does not automatically enable SMP support, the build is very likely to fail.

Use./configure --disabl e-snp-support if youfor some reason do not want to have the emulator with
SMP support built.

If SMP support is enabled, support for threaded 1/O will also be turned on (also in the emulator without SM P support).

Theer | command will automatically start the SMP emulator if the computer has more than one logical processor.
You can force a start of the emulator with SMP support by passing - snp enabl e as command line arguments to
erl, and you can force a start of the emulator without SMP support by passing - snp di sabl e.

1.3.8 GS (Graphic System)
GSnow Tcl/Tk 8.4. It will be searched for when starting GS.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href
href
href
href

1.3 Building and Installing Erlang/OTP

1.3.9 Using HiPE

HiPE supports the following system configurations:
e x86: All 32-bit and 64-bit mode processors should work.
e Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

e Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

e FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
«  MacOSX/Darwin: Darwin 9.8.0 in 32-bit mode should work.

o PowerPC: All 32-bit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and Mac OSX 10.4 are supported.
*  SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
« ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linux issupported.
HiPE is automatically enabled on the following systems:

e X86in 32-bit mode: Linux, Solaris, FreeBSD
e X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, MacOSX

e SPARC: Linux

 ARM: Linux

On other supported systemsyou needto . / conf i gure --enabl e- hi pe.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Modul e, native).

or

1> c(Mdul e, [native| Ot herOptions]).

Using the erlc program, write like this:

$ erlc +native Mdule. erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15



1.3 Building and Installing Erlang/OTP

To add hipe options, write like this from the Erlang shell:

1> c(Modul e, [native, {hi pe, H peOptions}| MoreOptions]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hi pe: hel p_options().

1.3.10 Mac OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host confi g).

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
flat _nanmespace -undefined suppress. Youalsoinclude-f no- conmon in CFLAGS when compiling.
Use. so asthelibrary suffix.

Usethe- - enabl e- dar wi n- 64bi t configure flag to build a 64-bit binaries on Mac OS X.

1.3.11 Building universal binaries on Mac OS X (obsolete information)
(Thisinformation was written when Mac OS X Leopard was the current release. It may no longer work.)

Universal 32bit binaries can be built on an Intel Mac using the- - enabl e- dar wi n- uni ver sal configure option.
There still may occur problems with certain applications using this option, but the base system should run smoothly.

When building universal binaries on a PowerPC Mac (at least on Tiger), you must point out a suitable SDK that
contains universal binaries. For instance, to build universal binaries for Tiger (10.4):

$ CFLAGS="-isysroot /Devel oper/ SDKs/ MacOSX10. 4u. sdk" \
LDFLAGS="-i sysroot /Devel oper/ SDKs/ MacOSX10. 4u. sdk" \
./ configure --enabl e-darw n-uni ver sal

Also, if you run Leopard, but want to build for Tiger, you must do by setting the MACOSX DEPLOYMENT _TARGET
environmental variable.

$ export MACOSX_DEPLOYMENT TARGET=10. 4

Experimental support for 64bit x86 darwin binaries can beenabled using the- - enabl e- dar wi n- 64bi t configure
flag. The 64bit binaries are best built and run on Leopard, but most of the system also works on Tiger (Tiger's 64bit
libraries are, however, limited; thereforee.g. odbc, cr ypt 0, ssl etc. are not supported in Tiger). 64bit PPC binaries
are not supported and we have no plans to add such support (no machines to test on).

Universal binaries and 64bit binaries are mutually exclusive options.

1.3.12 Building a fast Erlang VM on Mac OS Lion

Starting with Xcode 4.2, Apple no longer includes a "real” gcc compiler (not based on the LLVM). Building with
I I vm gcc or cl ang will work, but the performance of the Erlang run-time system will not be the best possible.

Notethat if you havegcc- 4. 2 installed and included in PATH (from aprevious version of Xcode), conf i gur e will
automatically make surethat gcc- 4. 2 will be used to compilebeam enu. c (the source file most in need of gcc).

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.3 Building and Installing Erlang/OTP

If youdon't havegcc- 4. 2. and want to build a run-time system with the best possible performance, do like this:
Install Xcode from the AppStoreif it is not already installed.

If you have Xcode 4.3, or later, you will aso need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Some tools may still be lacking or out-of-date, we recommend using Homebr ew or Macports to update those tools.
Install MacPorts (http://www.macports.org/). Then:

$ sudo port sel fupdate
$ sudo port install gcc45 +universal

Building with wxErlang

If you want to build the wx application, you will need to get wxMac-2.8.12 (wx Mac- 2. 8. 12. t ar . gz from http://
sour cefor ge.net/pr oj ectswxwindows/files/2.8.12/) and install it.

Export the path for MacOSX10.6.sdk:

$ export SDK=/ Devel oper/ SDKs/ MacOSX10. 6. sdk

In Xcode 4.3 the path has changed so use the following instead,

$ export SDK=/ Appl i cati ons/ Xcode. app/ Cont ent s/ Devel oper/ Pl at f or ms/ MacOSX. pl at f or nf Devel oper/ SDKs/ MacOSX10. 6. :

Then configure and build wxMac:

$ arch_flags="-arch i 386" ./configure CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" CPPFLAGS="$arch_flags" LDFI
$ nmake
$ sudo make install

To link wx properly you will aso need to build and install wxSt yl edText Ctrl :

$ cd contrib/src/stc
$ nake
$ sudo meke install

Finish up

Build Erlang with the MacPorts GCC as the main compiler (using cl ang for the Objective-C Cocoa code in the wx
application):

$ PATH=/ usr/ | ocal / bi n: $PATH CC=/ opt /| ocal / bi n/ gcc-np-4.5 CXX=/opt/| ocal / bi n/ g++-np-4.5 ./configure --enable-1
$ sudo make install

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17


href
href
href
href

1.3 Building and Installing Erlang/OTP

1.3.13 How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ enul at or .

In this directory execute:

$ nmake debug FLAVOR=$FLAVOR

where $FLAVCR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles areinstalled along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL_TOP/ bi n/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
a developer ensure correctness. Some of these features can be enabled on anormal beam using appropriate configure
options.

There are other types of runtime systems that can be built aswell using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

1.3.14 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ I i b/ */ AUTHORS and
$ERL_TOP/ ert s/ AUTHORS, nat in theindividual sourcefiles.

1.3.15 Copyright and License

Copyright Ericsson AB 1998-2012. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.3.16 More Information

More information can be found at http://www.erlang.or g.

1.3.17 Modifying This Document
Before modifying this document you need to have alook at the SERL_TOP/ README. nd. t xt document.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href

1.4 Cross Compiling Erlang/OTP

1.4 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
*  Cross Configuration
e What can be Cross Compiled?
e Compatibility
*  Patches
e Build and Install Procedure
»  Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
e Installing
* Installing Using Paths Determined by configure
* Installing Manually
e Building With the otp_build Script
e Testing the cross compiled system
e Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
e Cross System Root Locations
e Optional Feature, and Bug Tests
e Copyright and License
*  Modifying This Document

1.4.1 Introduction

This document describes how to cross compile Erlang/OTP-R15B03. Note that the support for cross compiling Erlang/
OTP should be considered as experimental. As far as we know, the R15B03 release should cross compile fine, but
since we currently have avery limited set of cross compilation environments to test with we cannot be sure. The cross
compilation support will remain in an experimental state until we get a lot more cross compilation environments to
test with.

Y ou are advised to read the whole document before attempting to cross compile Erlang/OTP. However, before reading
thisdocument, you should read the SERL_TOP/INSTALL.md document which describesbuilding and installing Erlang/
OTPin general. $ERL_TOPR isthe top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done €either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command linearguments unless

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19



1.4 Cross Compiling Erlang/OTP

--enabl e- dynani c-ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui | d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables before invoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks example fileis highly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf. t enpl at e, anduseitinconfi gure. i n. Other filesthat might need
to be updated are:

e $ERL_TOP/ xconp/ erl - xconp-vars. sh
« $ERL _TOP/erl-build-tool -vars. sh
e S$ERL_TOP/erts/aclocal . m

e $ERL_TOP/ xconp/ README. md

e $ERL _TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.4.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/INSTALL.md before proceeding.
We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href
href

1.4 Cross Compiling Erlang/OTP

Building With configure/make Directly
D

Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build the documentation out of the same source tree as you are cross compiling in, you currently need
afull Erlang/OTP system of the same release as the one being built for the build machine. If thisis the case, build and
install one for the build machine (or use one already built) and add it to the $PATH before cross building, and building
the documentation. See the How to Build the Documentation section in the $ERL_TOP/INSTALL.md document for
information on how to build the documentation.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System

2

$ ./configure --enabl e-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
meke boot st rap; otherwise, the whole system will be built.

Cross Building the System
(©)

$ ./configure --host=<HOST> --buil d=<BU LD> [ her Config Args]
$ neke

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_ TOP/
ert s/ aut oconf/ confi g. guess, itwill in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21



1.4 Cross Compiling Erlang/OTP

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT _OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
Y ou can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ nmeke install DESTDI R=<TEMPORARY_PREFI X>

meke install will instal at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr/ | ocal . You typically do not want to install your cross build under / usr/
| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $SDESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When neke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
®)

$ make rel ease RELEASE ROOT=<RELEASE DI R>

make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation


href

1.4 Cross Compiling Erlang/OTP

$ ./Install [-cross] [-mninmal|-sasl] <ERL_ROOT>

where:

 -m ni mal Createsan instalation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also startsup the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)
« Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DI R>
$ ./Install -cross [-mninal|-sasl] <ABSOLUTE_|I NSTALL_DI R_ON _TARGET>

or:

()
* Package the installation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script onyour target machine:

$ cd <ABSOLUTE_I| NSTALL_DI R_ ON_TARGET>
$ ./Install [-mnimal|-sasl] <ABSOLUTE_|I NSTALL_DI R_ON TARGET>

Building With the otp_build Script
)

$ cd $ERL_TOP

()

$ ./otp_build configure --xconmp-conf=<FILE> [ her Config Args]

aternatively:

$ ./otp_build configure --host=<HOST> --buil d=<BU LD> [ & her Config Args]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23



1.4 Cross Compiling Erlang/OTP

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

$ ./otp_build boot -a

otp_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$ ./otp_build rel ease -a <RELEASE DI R>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.4.3 Testing the cross compiled system

$ nmake rel ease tests

or

$ ./otp_build tests

The tests will be released into SERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto . / ot p_bui | d in(9).

$ cd $ERL_TOP/rel ease/tests/test_server/
$ $ERL_TOP/ bootstrap/bin/erl -eval 'ts:install([{xconp,"<FILE>"}])"' -s ts conpile_testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_ TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s tsinstall -s ts run all _tests -s init stop

The configure should be skipped and al tests should hopefully pass. For more details about how to use tsrun er |
-s ts help -s init stop

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.4 Cross Compiling Erlang/OTP

1.4.4 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. This value will be passed as- - bui | d=$er| _xconp_bui I d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- OS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If sat to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/ confi g. guess.

* erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

e erl_xconp_configure_ fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where <HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
e« CC- Ccompiler.

*  CFLAGS - C compiler flags.

e« STATI C_CFLAGS - Static C compiler flags.

e CFLAG_RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25



1.4 Cross Compiling Erlang/OTP

Note:
Either set all or none of the DED_LD* variables.

e« DED_LD- Linker for Dynamically loaded Erlang Drivers.

 DED LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
librarieswhen linking with DED_LD.

Large File Support

Note:
Either set al or none of the LFS_* variables.

e LFS _CFLAGS - Largefile support C compiler flags.
e LFS _LDFLAGS - Largefile support linker flags.
e LFS LI BS- Largefilesupport libraries.

Other Tools
* RANLIB-ranlib archiveindex tool.

e AR-ar archiving tool.

« CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

e« erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests
Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.4 Cross Compiling Erlang/OTP

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

« erl_xconp_after _norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

 erl_xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

e erl_xconp_doubl e_ni ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has"regular" endianness.

e« erl_xconp_clock_gettinme_cpu_tinme-yes|no.Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

* erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and I1Pv6.

e erl_xconp_gethrvtinme_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

e erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
workingdl sym( RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack themal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

e« erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

e erl_xconmp_linux_clock_gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me( CLOCK_MONOTONI C, ) on thetarget system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

 erl_xconp_linux_nptl -yes|no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

 erl_xconp_linux_usabl e_si gal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

e« erl_xconp_linux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

e erl_xconp_pol |l -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | ().

 erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

e erl_xconmp_reliable fpe-yes|no.Defaultstono.If yes, thetarget system must have reliable floating
point exceptions.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27



1.5 How to Build Erlang/OTP on Windows

1.4.5 Copyright and License
Copyright Ericsson AB 2009-2012. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed on an"ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.4.6 Modifying This Document
Before modifying this document you need to have alook at the $ERL_TOP/ READMVE. nd. t xt document.

1.5 How to Build Erlang/OTP on Windows

Table of Contents

* Introduction

*  Frequently Asked Questions

» Toolsyou Need and Their Environment
e The Shell Environment

* Building and Installing

»  Development

e UsingGIT

*  Final Words

e Copyright and License

*  Modifying This Document

1.5.1 Introduction

This file describes how to build the Erlang emulator and the OTP libraries on Windows. The instructions apply to
versions of Windows supporting the Cygwin emul ated gnuish environment for Windows or the Msys ditto. We've built
on the following platforms: Windows 2003 server, Windows XP Home/Professional, Windows Vista and Windows
7 (32 and 64 bit). You can probably build on Windows 2000, but you will not be able to install the latest Microsoft
SDK, so you have to go back to some earlier compiler. Any Windows95'ish platform will surely get you into trouble,
what 1'm not sure of, but it certainly will...

The procedure described uses either Cygwin or Msys as a build environment, you run the bash shell in Cygwin/Msys
and use gnu make/configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled
with Microsoft Visual C++™, producing a native Windows binary. This is the same procedure as we use to build the
pre-built binaries. The fact that we use V C++ and not gcc is explained further in the FAQ section.

| describe the build procedure to make it possible for open source customers to build the emulator, given that they
have the needed tools. The binary Windows releases is still a preferred alternative if one does not have Microsoft's
development tools and/or don't want to install Cygwin or Msys.

To use Cygwin/Msys, one needs basic experience from a Unix environment, if one does not know how to set
environment variables, run programs etc in a Unix environment, one will be quite lost in the Cygwin os Msys ditto.
I can unfortunately not teach all the world how to use Cygwin and bash, neither how to install Cygwin nor perform
basic tasks on a computer. Please refer to other documentation on the net for help, or use the binary release instead
if you have problems using the tools.

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation



1.5 How to Build Erlang/OTP on Windows

However, if you feel comfortable with the environment and build system, and have all the necessary tools, you have
a great opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions and
patches to the appropriate mailing lists to let them find their way into the next version of Erlang. If making changes
to the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks,
so that your changes don't break other platforms. That of course goes for C-code too, system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $SERL_TOP/ er t s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ emul at or / beamdirectory isfor common code.

Before the RIC release of Erlang/OTP, the Windows rel ease was built partly on a Unix (Solaris) box and partly on a
Windows box, using Perl hacks to communicate and sync between the two machines. ROC was the first release ever
built solely on Windows, where no Unix machine is needed at all. Now we've used this build procedure for a couple
of releases, and it has worked fine for us. Still, there might be al sorts of troubles on different machines and with
different setups. I'll try to give hintswherever |'ve encountered difficulties, but please share your experiences by using
the erlang-questions mailing list. | cannot of course help everyone with all their problems, please try to solve the
problems and submit sol utions/workarounds. Remember, it's al about sharing, not about demanding...

Starting with R15B, our build system runs both on Cygwin and Msys (MinGW's fork of an early cygwin version).
Msysisasmaller package to install and may on some machines run dlightly faster. If Cygwin gives you trouble, try
Msysinstead, and v.v. Beginning with R15B thereis also anative 64bit version of Erlang for 64bit Windows 7 (only).
These instructions apply to both the 32bit VM and the 64bit ditto.

Note that even if you build a 64bit VM, most of the directories and files involved are still named win32. You can
view the name win32 as meaning any windows version not beeing 16bit. A few occurences of the name Win64 are
however present in the system, for example the installation file for a 64 bit windows version of Erlang is by default
named ot p_wi n64_<ver si on>. exe.

Letsgo then, I'll start with alittle FAQ, based on in house questions and misunderstandings.

1.5.2 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ till, a Bourne-shell script (cc.sh) wraps the Visu